Using Stepanov's method for exponential sums involving rational functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Stepanov’s Method for Exponential Sums Involving Rational Functions

For a non-trivial additive character ψ and multiplicative character χ on a finite field Fq , and rational functions f, g in Fq(x), we show that the elementary Stepanov-Schmidt method can be used to obtain the corresponding Weil bound for the sum ∑ x∈Fq\S χ(g(x))ψ(f(x)) where S is the set of the poles of f and g. We also determine precisely the number of characteristic values ωi of modulus q1/2 ...

متن کامل

Bilinear Sums with Exponential Functions

Let g = 0,±1 be a fixed integer. Given two sequences of complex numbers (φm) ∞ m=1 and (ψn) ∞ n=1 and two sufficiently large integers M and N , we estimate the exponential sums ∑ p≤M gcd(ag,p)=1 ∑ 1≤n≤N φpψnep (ag ) , a ∈ Z, where the outer summation is taken over all primes p ≤ M with gcd(ag, p) = 1.

متن کامل

Some More Identities Involving Rational Sums

The representation of sums in closed form can in some cases be achieved through a variety of different methods, including transform techniques, W–Z methods, Riordan arrays and integral representations. The interested reader is referred to the works of Egorychev [2], Gould [3], Merlini, Sprugnoli and Verri [4], Petkovšek, Wilf and Zeilberger [5] and Sofo [6], [7] and [8]. Recently Diaz-Barrero e...

متن کامل

Using the Rd Rational Arnoldi Method for Exponential Integrators

In this paper we investigate some practical aspects concerning the use of the Restricted-Denominator (RD) rational Arnoldi method for the computation of the core functions of exponential integrators for parabolic problems. We derive some useful a-posteriori bounds together with some hints for a suitable implementation inside the integrators. Numerical experiments arising from the discretization...

متن کامل

On Approximation of Functions by Exponential Sums

We introduce a new approach, and associated algorithms, for the efficient approximation of functions and sequences by short linear combinations of exponential functions with complex-valued exponents and coefficients. These approximations are obtained for a finite but arbitrary accuracy and typically have significantly fewer terms than Fourier representations. We present several examples of thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2006

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2005.04.001